Michael－Addition Reaction of Malononitrile with α, β－Unsaturated Cycloketones Catalyzed by KF／ $\mathrm{Al}_{2} \mathrm{O}_{3}$

WANG，Xiang－Shan＊（王香善）SHI，Da－Qing（史达清）TU，Shu－Jiang（屠树江）
Department of Chemistry，Xuzhou Normal University，Xuzhou，Jiangsu 221116，China

Abstract

A series of $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyzed Michael－addition reactions between malononitrile and α, β－unsaturated cycloke－ tones in DMF solution were studied．At room temperature，2－cyano－3－aryl－3－（1，2，3，4－tetrahydronaphthalen－ 1 －one－ 2 －yl）propionitrile derivatives were synthesized by the reaction between 2 －arylmethylidene－1，2，3，4－tetra－ hydronaphthalen－1－one and malononitrile．However，if the temperature was increased to $80{ }^{\circ} \mathrm{C}, 2$－amino－3－cyano－4－ aryl－ 4 H －benzo $[h]$ chromene derivatives were obtained in high yields．When the α, β－unsaturated ketones were re－ placed by 2，6－biarylmethylidenecyclohexanone or 2，5－biarylmethylidenecyclopentanone，another series of 2－amino－ 3 －cyano－ $4 H$－pyran derivatives was isolated successfully．The structures of the products were confirmed by X－ray diffraction analysis．

Keywords 2－amino－3－cyano－4H－pyran derivative，α, β－unsaturated cycloketone，Michael－addition reaction， synthesis

The utility of fluoride salts as potential base in a va－ riety of synthetic reactions has been recognized in re－ cent years．${ }^{1}$ However，low solubility of fluoride salts in ordinary solvents hampers their wide applications in organic synthesis．On the other hand，there has been increasing use of inorganic solid supports as catalysts for many years ${ }^{2}$ resulting in higher selectivity，milder reaction conditions and easier work－up．Especially po－ tassium fluoride－coated alumina（KF－alumina）has been a versatile solid－supported reagent used for Knoevena－ gel reaction，${ }^{3}$ Henry reaction，${ }^{4}$ Darzens reaction，${ }^{5}$ Wit－ ting reaction，${ }^{6}$ alkylation，${ }^{7}$ elimination ${ }^{5}$ and many other reactions．${ }^{8}$ In our previous paper，${ }^{9}$ we reported the reac－ tion of 1，3－diaryl－2－propen－1－one with malononitrile using $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ as catalyst．As an extension to the study， herein we would like to report the Michael－addition re－ action between malononitrile and α, β－unsaturated cycloketones catalyzed by $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ ．

Results and discussion

When malononitrile and 2－arylmethylidene－1，2，3，4－ tetrahydronaphthalene－1－one were treated with KF－ alumina in DMF at room temperature（Scheme 1），the desired 2－cyano－3－aryl－3－（1，2，3，4－tetrahydronaphtha－ lene－1－one－2－yl）propionitrile derivatives（1）were ob－ tained in good yields（ 73%－ 93% ）．

However it was interesting to note that when the reaction temperature was increased to $80{ }^{\circ} \mathrm{C}$ ，the 2－amino－3－cyano－4－aryl－4 H －benzo［ h ］chromene deriva－ tives（2）were obtained in high yields（ $86 \%-94 \%$ ）
（Scheme 2），which were not just the addition reaction products．

Scheme 1

Scheme 2

It should be noted that when α, β－unsaturated cycloketones，such as 2，6－biarylmethylidenecyclo－ hexanone or 2，5－biarylmethylidenecyclopentanone were used in this reaction，the simple Michael addition prod－ ucts were not detected at all，instead 2－amino－3－cyano－ 4－aryl－8－arylmethylidene－1，4，5，6，7，8－hexahydrobenzo－ ［b］pyran or 2－amino－3－cyano－4－aryl－7－arylmethylidene－ cyclopetano［b］pyran derivatives（3）were obtained （Scheme 3），although the reaction was controlled at room temperature．The results of $\mathbf{1 , 2}$ and $\mathbf{3}$ are summa－ rized in Table 1.

[^0]
Scheme 3

Table 1 Synthetic data of 1, 2 and 3

Entry	Ar	R or n	m.p. $/{ }^{\circ} \mathrm{C}$	Yield/\%
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	144-146	83
1b	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	140-142	93
1c	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	188-189	76
1d	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	142-144	91
1 e	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	151-153	73
1f	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	190-192	80
1 g	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	182-184	90
2a	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	H	183-184	92
2 b	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	201-203	90
2 c	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	166-168	87
2 d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	175-177	94
2 e	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	176-177	90
$2 f$	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	211-212	89
2 g	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	204-206	86
1h	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	200-202	92
3a	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	1	237-238	82
3b	$\mathrm{C}_{6} \mathrm{H}_{5}$	1	$\begin{gathered} 232-233 \\ \text { (lit. }{ }^{10} 228-230 \text {) } \end{gathered}$	81
3 c	$3,4-\mathrm{OCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{3}$	1	236-238	86
3d	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	1	162-163	76
3 e	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	1	195-196	68
3 f	$2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	0	238-239	80
3 g	$\mathrm{C}_{6} \mathrm{H}_{5}$	0	228-230	90
3h	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	0	214-215	73

Figure 1 Structure of compound 2a.

Figure 2 Structure of compound 3a.
The structures of 2a and 3a were confirmed by X-ray diffraction analysis, as shown in Figures 1 and 2, respectively. The selected crystallographic data are listed in Table 2. The X-ray diffraction analysis reveals that in the molecule 2a the pyran ring is slightly distorted and adopts a half-chair conformation; the atoms $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(4), \mathrm{C}(5)$ and $\mathrm{O}(1)$ are coplanar, with $\mathrm{C}(3)$ deviating from the plane by $-0.0149(2) \mathrm{nm}$. The dihedral angle between the plane and phenyl ring [C(14)$\mathrm{C}(19)$] is 96.68°. In molecule 3a, the pyran ring adopts boat conformation; the atoms O and $\mathrm{C}(16)$ deviate from the mean plane defined by $\mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(14)$ and $\mathrm{C}(15)$ by -0.01226 nm and -0.01687 nm , respectively. The phenyl ring $[\mathrm{C}(17)-\mathrm{C}(22)]$ is nearly perpendicular to the pyran ring with dihedral angle of 86.08°.

According to the structures of $\mathbf{2}$ and $\mathbf{3}$, a sequential reaction of the Michael-addition followed by the intramolecular cyclization may take place during the formation of the product. The possible mechanism is shown in Scheme 4 (using the formation of compound 2 as example).

Scheme 4

Table 2 Crystallographic data for 2a and 3a

Compound	2a	3a
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$
Color/shape	Yellow/Block	Pale yellow/Block
Formula weight	330.37	409.29
Temperature	$296(2) \mathrm{K}$	$296(2) \mathrm{K}$
Crystal system	Monoclinic	Monoclinic
Space group	$P 2(1) / c$	$P 2(1) / n$
Unit cell dimensions	$a=0.6487(1) \mathrm{nm}$,	$a=1.3582(2) \mathrm{nm}$,
	$b=2.5557(5) \mathrm{nm}, \beta=96.75(2)^{\circ}$,	$b=0.8974(1) \mathrm{nm}, \beta=103.34(1)^{\circ}$,
	$c=1.0459(2) \mathrm{nm}$	$c=1.6960(2) \mathrm{nm}$
Volume	$1.7344(5) \mathrm{nm}^{3}$	$2.011 .4(4) \mathrm{nm}$
Z	4	4
Density (calculated)	$1.265 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	$1.352 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
Absorption coefficient/mm ${ }^{-1}$	0.082	0.339
Diffractometer/scan	Siemens $\mathrm{P} 4 / \omega$	$\mathrm{Siemens} \mathrm{P} 4 / \omega$
$F(000)$	696	848
Crystal size	$0.58 \mathrm{~mm} \times 0.44 \mathrm{~mm} \times 0.40 \mathrm{~mm}$	$0.50 \mathrm{~mm} \times 0.44 \mathrm{~mm} \times 0.32 \mathrm{~mm}$
θ range for data collection	1.59° to 25.25°	1.74° to 25.00°
Limiting indices	$0 \leqslant h \leqslant 7,0 \leqslant k \leqslant 30,-12 \leqslant l \leqslant 12$	$0 \leqslant h \leqslant 8,0 \leqslant k \leqslant 10,-20 \leqslant l \leqslant 19$
Reflections collected	3360	4108
Independent reflections	$3147[R($ int $)=0.0103]$	$3550[R(\mathrm{int})=0.0177]$
Data/restraint/parameter	$3147 / 2 / 236$	$3550 / 2 / 282$
Goodness-of-fit on F^{2}	0.891	0.876
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0367, w R_{2}=0.0854$	$R_{1}=0.0361, w R_{2}=0.0790$
R indices (all data)	$R_{1}=0.0666, w R_{2}=0.0933$	$R_{1}=0.0707, w R_{2}=0.0887$
Extinction coefficient	$0.0165(14)$	138 and $-156 \mathrm{e} \cdot \mathrm{nm} m^{-3}$
Largest diff. peak and hole	148 and $-111 \mathrm{e} \cdot \mathrm{nm}{ }^{-3}$	

Experimental

Typical experimental procedure

Melting points were determined in open capillaries and uncorrected. IR spectra were recorded on a TENSOR 27 spectrometer in KBr pellet. ${ }^{1} \mathrm{H}$ NMR spectra were obtained via an Inova-400 spectrometer, using DMSO- d_{6} or CDCl_{3} as solvents, and $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Elemental analyses were carried out using Carlo Erba 1110 analyzer. X-ray diffraction was measured on a Siemens P4 diffractometer.

A dry $50-\mathrm{mL}$ flask was charged with malononitrile (3 mmol), α, β-unsaturated cycloketones (2 mmol), KF-alumina (500 mg) and DMF (15 mL). The mixture was stirred at room temperature for $8-10 \mathrm{~h}$ (at $80{ }^{\circ} \mathrm{C}$ for $4-5 \mathrm{~h}$, then cooled down to room temperature for products 2), and then poured into 200 mL of water. The yellow solid was filtered and washed with water. The crude product was purified by recrystallization from $95 \% \mathrm{EtOH}$ to give 1 or $\mathbf{2}$ or $\mathbf{3}$.

Selected spectral data

1a m.p. 144-146 ${ }^{\circ} \mathrm{C}$; IR (KBr) v: 2964, 2265, $1673,1599,1513,1455,1431,1379,1301,1268,1214$, $1192,1150,1115,942,893,812,776,738,595,538$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.71-2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.91-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.25-3.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 3.47 (dd, $J=10,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.65(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 7.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.30-7.32$ (m, $6 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C 79.98, H 5.37, N 9.33; found C $80.21, \mathrm{H} 5.30, \mathrm{~N} 9.24$.

2a m.p. 183-184 ${ }^{\circ} \mathrm{C}$; IR (KBr) v: 3427, 3325, 3066, 2933, 2898, 2192, 1698, 1639, 1588, 1470, 1420, 1274, 1090, 840, $765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ : $1.83-2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57-2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.75$ (s, 2H, ArH), $6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.15\left(\mathrm{~b}, 3 \mathrm{H}, \mathrm{NH}_{2}+\mathrm{ArH}\right)$, $7.22-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 76.34, H 5.49, N 8.48; found C 76.28, H5.60, N 8.35 .

3a m.p. 237-238 ${ }^{\circ} \mathrm{C}$; IR (KBr) v: 3464, 3344, 2920, 2191, 1671, 1637, 1594, 1468, 1414, 1254, 1130, 1030, 859, 822, 747, $693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ : $1.46-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69-2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.33-2.45 (m, 2H, CH2), 4.57 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 6.91 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 7.28-7.51(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$: C 67.49, H 4.43, N 6.84; found C 67.58, H 4.40, N 6.88 .

References

1 (a) Clark, J. H. Chem. Rev. 1980, 80, 429.
(b) Apsimon, J. W.; Hooper, J. W.; Laishes, B. A. Can. J. Chem. 1970, 48, 3064.
2 (a) Villemin, D.; Ricard, M. Tetrahedron Lett. 1984, 25, 1059.
(b) Cabello, J. A.; Campelo, J. M.; Garcia, D.; Luna, D.; Marinas, J. M. J. Org. Chem. 1984, 49, 5195.
3 Gao, Y.; Shi, D. Q.; Zhou, L. H.; Dai, G. Y. Chin. J. Org. Chem. 1996, 16, 548 (in Chinese).
4 Melot, J. M.; Boullet, F. M.; Foucaud, A. Tetrahedron Lett. 1986, 27, 493.

5 Yamawaki, J.; Kawate, T.; Ando, T.; Hanafusa, T. Bull. Chem. Soc. Jpn. 1983, 56, 1885.
6 Boullet, F. M.; Villemin, D.; Ricard, M.; Moison, A.; Foucaud, A. Tetrahedron 1985, 41, 1259.
7 (a) Yamawaki, J.; Ando, T. Chem. Lett. 1985, (5), 533.
(b) Yamawaki, J.; Ando, T.; Hanafusa, T. Chem. Lett. 1981, (8) 1143 .
(c) Villemin, D. J. Chem. Soc., Chem. Commun. 1985, (13), 870.

8 (a) Wang, X. S.; Shi, D. Q.; Tu, S. J. Chin. J. Org. Chem. 2002, 22, 909 (in Chinese).
(b) Wang, X. S.; Shi, D. Q.; Tu, S. J. Synth. Commun. 2003, 33, 119.
(c) Wang, X. S.; Shi, D. Q.; Tu, S. J. Chin. J. Org. Chem. 2003, 23, 210 (in Chinese).
(d) Wang, X. S.; Shi, D. Q.; Tu, S. Chin. J. Chem. 2003, 21, 1114.

9 Shi, D. Q.; Lu, Z. S.; Wang, S. H.; Tu, S. J.; Dai, G. Y. Synth. Commun. 1998, 28, 4003.
10 Zhou, J. F. Synth. Commun. 2003, 33, 99.

[^0]: ＊E－mail：xswang1974＠yahoo．com；xswang＠xznu．edu．cn
 Received June 11，2003；revised October 8，2003；accepted November 28， 2003.
 Project supported by the Foundation of the＂Surpassing Project＂of Jiangsu Province．

